3.164 \(\int \frac {(a+a \sec (e+f x))^{5/2}}{(c+d \sec (e+f x))^2} \, dx\)

Optimal. Leaf size=329 \[ \frac {2 a^{7/2} (c-d) \sqrt {c+d} \tan (e+f x) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right )}{c^2 d^{3/2} f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}+\frac {2 a^{7/2} \tan (e+f x) \tanh ^{-1}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right )}{c^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}-\frac {a^{7/2} (c-d)^2 \tan (e+f x) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right )}{c d^{3/2} f (c+d)^{3/2} \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}-\frac {a^3 (c-d)^2 \tan (e+f x)}{c d f (c+d) \sqrt {a \sec (e+f x)+a} (c+d \sec (e+f x))} \]

[Out]

-a^3*(c-d)^2*tan(f*x+e)/c/d/(c+d)/f/(c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2)+2*a^(7/2)*arctanh((a-a*sec(f*x+e))
^(1/2)/a^(1/2))*tan(f*x+e)/c^2/f/(a-a*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2)-a^(7/2)*(c-d)^2*arctanh(d^(1/2)
*(a-a*sec(f*x+e))^(1/2)/a^(1/2)/(c+d)^(1/2))*tan(f*x+e)/c/d^(3/2)/(c+d)^(3/2)/f/(a-a*sec(f*x+e))^(1/2)/(a+a*se
c(f*x+e))^(1/2)+2*a^(7/2)*(c-d)*arctanh(d^(1/2)*(a-a*sec(f*x+e))^(1/2)/a^(1/2)/(c+d)^(1/2))*(c+d)^(1/2)*tan(f*
x+e)/c^2/d^(3/2)/f/(a-a*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 329, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3940, 180, 63, 206, 51, 208} \[ \frac {2 a^{7/2} (c-d) \sqrt {c+d} \tan (e+f x) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right )}{c^2 d^{3/2} f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}+\frac {2 a^{7/2} \tan (e+f x) \tanh ^{-1}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right )}{c^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}-\frac {a^{7/2} (c-d)^2 \tan (e+f x) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right )}{c d^{3/2} f (c+d)^{3/2} \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}-\frac {a^3 (c-d)^2 \tan (e+f x)}{c d f (c+d) \sqrt {a \sec (e+f x)+a} (c+d \sec (e+f x))} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[e + f*x])^(5/2)/(c + d*Sec[e + f*x])^2,x]

[Out]

(2*a^(7/2)*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]]*Tan[e + f*x])/(c^2*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*
Sec[e + f*x]]) - (a^(7/2)*(c - d)^2*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sqrt[a]*Sqrt[c + d])]*Tan[e +
f*x])/(c*d^(3/2)*(c + d)^(3/2)*f*Sqrt[a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]) + (2*a^(7/2)*(c - d)*Sqrt[
c + d]*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sqrt[a]*Sqrt[c + d])]*Tan[e + f*x])/(c^2*d^(3/2)*f*Sqrt[a -
 a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]) - (a^3*(c - d)^2*Tan[e + f*x])/(c*d*(c + d)*f*Sqrt[a + a*Sec[e + f*
x]]*(c + d*Sec[e + f*x]))

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 180

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_))^(q_), x
_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q, x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n}, x] && IntegersQ[p, q]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3940

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[(a^2*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[((a + b*x)^(m - 1/2)*(c
 + d*x)^n)/(x*Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d,
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m - 1/2]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (e+f x))^{5/2}}{(c+d \sec (e+f x))^2} \, dx &=-\frac {\left (a^2 \tan (e+f x)\right ) \operatorname {Subst}\left (\int \frac {(a+a x)^2}{x \sqrt {a-a x} (c+d x)^2} \, dx,x,\sec (e+f x)\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}\\ &=-\frac {\left (a^2 \tan (e+f x)\right ) \operatorname {Subst}\left (\int \left (\frac {a^2}{c^2 x \sqrt {a-a x}}-\frac {a^2 (c-d)^2}{c d \sqrt {a-a x} (c+d x)^2}+\frac {a^2 \left (c^2-d^2\right )}{c^2 d \sqrt {a-a x} (c+d x)}\right ) \, dx,x,\sec (e+f x)\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}\\ &=-\frac {\left (a^4 \tan (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a-a x}} \, dx,x,\sec (e+f x)\right )}{c^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {\left (a^4 (c-d)^2 \tan (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-a x} (c+d x)^2} \, dx,x,\sec (e+f x)\right )}{c d f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {\left (a^4 \left (c^2-d^2\right ) \tan (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-a x} (c+d x)} \, dx,x,\sec (e+f x)\right )}{c^2 d f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}\\ &=-\frac {a^3 (c-d)^2 \tan (e+f x)}{c d (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))}+\frac {\left (2 a^3 \tan (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{1-\frac {x^2}{a}} \, dx,x,\sqrt {a-a \sec (e+f x)}\right )}{c^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {\left (a^4 (c-d)^2 \tan (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a-a x} (c+d x)} \, dx,x,\sec (e+f x)\right )}{2 c d (c+d) f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {\left (2 a^3 \left (c^2-d^2\right ) \tan (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{c+d-\frac {d x^2}{a}} \, dx,x,\sqrt {a-a \sec (e+f x)}\right )}{c^2 d f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}\\ &=\frac {2 a^{7/2} \tanh ^{-1}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right ) \tan (e+f x)}{c^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {2 a^{7/2} (c-d) \sqrt {c+d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right ) \tan (e+f x)}{c^2 d^{3/2} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {a^3 (c-d)^2 \tan (e+f x)}{c d (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))}-\frac {\left (a^3 (c-d)^2 \tan (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{c+d-\frac {d x^2}{a}} \, dx,x,\sqrt {a-a \sec (e+f x)}\right )}{c d (c+d) f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}\\ &=\frac {2 a^{7/2} \tanh ^{-1}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right ) \tan (e+f x)}{c^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {a^{7/2} (c-d)^2 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right ) \tan (e+f x)}{c d^{3/2} (c+d)^{3/2} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}+\frac {2 a^{7/2} (c-d) \sqrt {c+d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right ) \tan (e+f x)}{c^2 d^{3/2} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {a^3 (c-d)^2 \tan (e+f x)}{c d (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.64, size = 280, normalized size = 0.85 \[ \frac {\sqrt {\cos (e+f x)} \sec ^5\left (\frac {1}{2} (e+f x)\right ) (a (\sec (e+f x)+1))^{5/2} (c \cos (e+f x)+d)^2 \left (\frac {4 \sqrt {2} (c-d) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {d} \sin \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c+d} \sqrt {\cos (e+f x)}}\right )}{\sqrt {d} \sqrt {c+d}}-\frac {(c-d)^2 \sin \left (\frac {1}{2} (e+f x)\right ) \left (2 c \cos (e+f x)-\frac {2 (c+2 d) (c \cos (e+f x)+d) \tanh ^{-1}\left (\sqrt {-\frac {d (\sec (e+f x)-1)}{c+d}}\right )}{(c+d) \sqrt {-\frac {d (\sec (e+f x)-1)}{c+d}}}\right )}{d (c+d) \sqrt {\cos (e+f x)} (c \cos (e+f x)+d)}+2 \sqrt {2} \sin ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (e+f x)\right )\right )\right )}{8 c^2 f (c+d \sec (e+f x))^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[e + f*x])^(5/2)/(c + d*Sec[e + f*x])^2,x]

[Out]

(Sqrt[Cos[e + f*x]]*(d + c*Cos[e + f*x])^2*Sec[(e + f*x)/2]^5*(a*(1 + Sec[e + f*x]))^(5/2)*(2*Sqrt[2]*ArcSin[S
qrt[2]*Sin[(e + f*x)/2]] + (4*Sqrt[2]*(c - d)*ArcTan[(Sqrt[2]*Sqrt[d]*Sin[(e + f*x)/2])/(Sqrt[c + d]*Sqrt[Cos[
e + f*x]])])/(Sqrt[d]*Sqrt[c + d]) - ((c - d)^2*(2*c*Cos[e + f*x] - (2*(c + 2*d)*ArcTanh[Sqrt[-((d*(-1 + Sec[e
 + f*x]))/(c + d))]]*(d + c*Cos[e + f*x]))/((c + d)*Sqrt[-((d*(-1 + Sec[e + f*x]))/(c + d))]))*Sin[(e + f*x)/2
])/(d*(c + d)*Sqrt[Cos[e + f*x]]*(d + c*Cos[e + f*x]))))/(8*c^2*f*(c + d*Sec[e + f*x])^2)

________________________________________________________________________________________

fricas [A]  time = 23.66, size = 2031, normalized size = 6.17 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(5/2)/(c+d*sec(f*x+e))^2,x, algorithm="fricas")

[Out]

[-1/2*(2*(a^2*c^3 - 2*a^2*c^2*d + a^2*c*d^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e)
 + (a^2*c^3*d + 4*a^2*c^2*d^2 - 3*a^2*c*d^3 - 2*a^2*d^4 + (a^2*c^4 + 4*a^2*c^3*d - 3*a^2*c^2*d^2 - 2*a^2*c*d^3
)*cos(f*x + e)^2 + (a^2*c^4 + 5*a^2*c^3*d + a^2*c^2*d^2 - 5*a^2*c*d^3 - 2*a^2*d^4)*cos(f*x + e))*sqrt(-a/(c*d
+ d^2))*log((2*(c*d + d^2)*sqrt(-a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x +
 e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e)
+ d)) - 2*(a^2*c*d^2 + a^2*d^3 + (a^2*c^2*d + a^2*c*d^2)*cos(f*x + e)^2 + (a^2*c^2*d + 2*a^2*c*d^2 + a^2*d^3)*
cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x +
e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/((c^4*d + c^3*d^2)*f*cos(f*x + e)^2 + (c^4*d + 2*c^
3*d^2 + c^2*d^3)*f*cos(f*x + e) + (c^3*d^2 + c^2*d^3)*f), -1/2*(2*(a^2*c^3 - 2*a^2*c^2*d + a^2*c*d^2)*sqrt((a*
cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + 4*(a^2*c*d^2 + a^2*d^3 + (a^2*c^2*d + a^2*c*d^2)*c
os(f*x + e)^2 + (a^2*c^2*d + 2*a^2*c*d^2 + a^2*d^3)*cos(f*x + e))*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos
(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) + (a^2*c^3*d + 4*a^2*c^2*d^2 - 3*a^2*c*d^3 - 2*a^2*d^4 + (a^2*
c^4 + 4*a^2*c^3*d - 3*a^2*c^2*d^2 - 2*a^2*c*d^3)*cos(f*x + e)^2 + (a^2*c^4 + 5*a^2*c^3*d + a^2*c^2*d^2 - 5*a^2
*c*d^3 - 2*a^2*d^4)*cos(f*x + e))*sqrt(-a/(c*d + d^2))*log((2*(c*d + d^2)*sqrt(-a/(c*d + d^2))*sqrt((a*cos(f*x
 + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x
+ e))/(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)))/((c^4*d + c^3*d^2)*f*cos(f*x + e)^2 + (c^4*d + 2*c^3*d^2
 + c^2*d^3)*f*cos(f*x + e) + (c^3*d^2 + c^2*d^3)*f), -((a^2*c^3 - 2*a^2*c^2*d + a^2*c*d^2)*sqrt((a*cos(f*x + e
) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a^2*c^3*d + 4*a^2*c^2*d^2 - 3*a^2*c*d^3 - 2*a^2*d^4 + (a^2*c
^4 + 4*a^2*c^3*d - 3*a^2*c^2*d^2 - 2*a^2*c*d^3)*cos(f*x + e)^2 + (a^2*c^4 + 5*a^2*c^3*d + a^2*c^2*d^2 - 5*a^2*
c*d^3 - 2*a^2*d^4)*cos(f*x + e))*sqrt(a/(c*d + d^2))*arctan((c + d)*sqrt(a/(c*d + d^2))*sqrt((a*cos(f*x + e) +
 a)/cos(f*x + e))*cos(f*x + e)/(a*sin(f*x + e))) - (a^2*c*d^2 + a^2*d^3 + (a^2*c^2*d + a^2*c*d^2)*cos(f*x + e)
^2 + (a^2*c^2*d + 2*a^2*c*d^2 + a^2*d^3)*cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*sqrt(-a)*sqrt((a*c
os(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/((c^4*d +
c^3*d^2)*f*cos(f*x + e)^2 + (c^4*d + 2*c^3*d^2 + c^2*d^3)*f*cos(f*x + e) + (c^3*d^2 + c^2*d^3)*f), -((a^2*c^3
- 2*a^2*c^2*d + a^2*c*d^2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a^2*c^3*d + 4*
a^2*c^2*d^2 - 3*a^2*c*d^3 - 2*a^2*d^4 + (a^2*c^4 + 4*a^2*c^3*d - 3*a^2*c^2*d^2 - 2*a^2*c*d^3)*cos(f*x + e)^2 +
 (a^2*c^4 + 5*a^2*c^3*d + a^2*c^2*d^2 - 5*a^2*c*d^3 - 2*a^2*d^4)*cos(f*x + e))*sqrt(a/(c*d + d^2))*arctan((c +
 d)*sqrt(a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(a*sin(f*x + e))) + 2*(a^2*c*d^2
+ a^2*d^3 + (a^2*c^2*d + a^2*c*d^2)*cos(f*x + e)^2 + (a^2*c^2*d + 2*a^2*c*d^2 + a^2*d^3)*cos(f*x + e))*sqrt(a)
*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))))/((c^4*d + c^3*d^2)*f*cos
(f*x + e)^2 + (c^4*d + 2*c^3*d^2 + c^2*d^3)*f*cos(f*x + e) + (c^3*d^2 + c^2*d^3)*f)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(5/2)/(c+d*sec(f*x+e))^2,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (4*pi/x/2)>(-4*pi/x/2)Unable to check si
gn: (4*pi/x/2)>(-4*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)-512*sqrt(2)*a^3*sqrt(-a)*(-a)^2*((-c^2*
(sqrt(-a*tan(1/2*(f*x+exp(1)))^2+a)-sqrt(-a)*tan(1/2*(f*x+exp(1))))^2+3*d^2*(sqrt(-a*tan(1/2*(f*x+exp(1)))^2+a
)-sqrt(-a)*tan(1/2*(f*x+exp(1))))^2-2*c*d*(sqrt(-a*tan(1/2*(f*x+exp(1)))^2+a)-sqrt(-a)*tan(1/2*(f*x+exp(1))))^
2-a*c^2-a*d^2+2*a*c*d)/(256*a^2*c*d^2+256*a^2*c^2*d)/(c*(sqrt(-a*tan(1/2*(f*x+exp(1)))^2+a)-sqrt(-a)*tan(1/2*(
f*x+exp(1))))^4-d*(sqrt(-a*tan(1/2*(f*x+exp(1)))^2+a)-sqrt(-a)*tan(1/2*(f*x+exp(1))))^4+2*a*c*(sqrt(-a*tan(1/2
*(f*x+exp(1)))^2+a)-sqrt(-a)*tan(1/2*(f*x+exp(1))))^2+6*a*d*(sqrt(-a*tan(1/2*(f*x+exp(1)))^2+a)-sqrt(-a)*tan(1
/2*(f*x+exp(1))))^2+a^2*c-a^2*d)+1/512*ln(abs(2*(sqrt(-a*tan(1/2*(f*x+exp(1)))^2+a)-sqrt(-a)*tan(1/2*(f*x+exp(
1))))^2-4*sqrt(2)*abs(a)-6*a)/abs(2*(sqrt(-a*tan(1/2*(f*x+exp(1)))^2+a)-sqrt(-a)*tan(1/2*(f*x+exp(1))))^2+4*sq
rt(2)*abs(a)-6*a))/sqrt(2)/a^2/c^2/abs(a)+1/4*(c^3-2*d^3-3*c*d^2+4*c^2*d)*atan(1/2*(c*(sqrt(-a*tan(1/2*(f*x+ex
p(1)))^2+a)-sqrt(-a)*tan(1/2*(f*x+exp(1))))^2-d*(sqrt(-a*tan(1/2*(f*x+exp(1)))^2+a)-sqrt(-a)*tan(1/2*(f*x+exp(
1))))^2+a*c+3*a*d)/sqrt(2)/sqrt(-d^2-c*d)/a)/sqrt(2)/sqrt(-d^2-c*d)/a/(-128*a^2*c^2*d^2-128*a^2*c^3*d))*sign(c
os(f*x+exp(1)))/f

________________________________________________________________________________________

maple [B]  time = 2.12, size = 46082, normalized size = 140.07 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(f*x+e))^(5/2)/(c+d*sec(f*x+e))^2,x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(5/2)/(c+d*sec(f*x+e))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{5/2}}{{\left (c+\frac {d}{\cos \left (e+f\,x\right )}\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(e + f*x))^(5/2)/(c + d/cos(e + f*x))^2,x)

[Out]

int((a + a/cos(e + f*x))^(5/2)/(c + d/cos(e + f*x))^2, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {5}{2}}}{\left (c + d \sec {\left (e + f x \right )}\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))**(5/2)/(c+d*sec(f*x+e))**2,x)

[Out]

Integral((a*(sec(e + f*x) + 1))**(5/2)/(c + d*sec(e + f*x))**2, x)

________________________________________________________________________________________